THE EFFECT OF TYPE II DIABETES MELLITUS ON BONE STRENGTH

Student Researcher: Laura Jackam
Advisor: Dr. Anne B. Loucks
Ohio University
College of Arts and Sciences
INTRODUCTION TO DIABETES MELLITUS

- **Diabetes mellitus** is characterized by insulin deficiencies which affect glucose metabolism.
- **Uncontrolled**, this disease can lead to many health issues.
- **There are multiple types of diabetes mellitus**
 - **Type I**
 - **Type II**

U.S. National Library of Medicine, 2019
INTRODUCTION TO BONE

- **Bone composition:**
 - Mineral
 - Collagen fibers
- **Bone is classified into 2 types:**
 - Trabecular
 - Cortical
- **Bone strength is determined by:**
 - Micro Architectural Properties
 - Quality of Tissue
 - Size

Willems et al, 2013
MOTIVATION FOR STUDY

• Over half a billion of the global population is diagnosed with type 2 diabetes mellitus

• Increased fracture rates and risk for osteoporosis
 • Bone mineral density (BMD)
QUASISTATIC MECHANICAL TEST (QMT)

- GOLD STANDARD METHOD FOR MEASURING BONE STRENGTH AND STIFFNESS
- EX VIVO
- FLEXURAL RIGIDITY \((EI) = K_B \frac{L^3}{48} \)
CORTICAL BONES MECHANICS TECHNOLOGY (CBMT)

- Non-invasive method used on cortical bone in vivo to measure the mechanical properties
- 3-point bending test
GOAL OF THIS STUDY

• TO COMPARE THE EFFECTS OF ULNA INTEROSSEOUS DIAMETER (IOD), BODY MASS INDEX (BMI) AND AGE ON BONE STRENGTH, FLEXURAL RIGIDITY, BONE STIFFNESS, AND BONE DAMPING BETWEEN DIABETIC AND NON-DIABETIC MALE CADAVERIC HUMAN ARMS
METHODS

2. Measure IOD of ulnas

3. Pair male diabetic cadaveric arm with non-diabetic male cadaveric arm based on IOD, BMI, and age

4. Perform regressive analysis to determine influence of IOD, BMI, and age on peak moment (M_{PEAK}), flexural rigidity from QMT (EI_{QMT}), flexural rigidity from CBMT (EI_{CBMT}), bone stiffness (K_B), and bone damping (B_B)
RESULTS - INFLUENCE OF IOD

M_{peak} vs IOD

- **Non-Diabetic**
 - $y = 11x - 140$
 - $R^2 = 0.85$
 - SEE = 5.30 Nm

- **Diabetic**
 - $y = 3.3x$
 - $R^2 = 0.95$
 - SEE = 14.8 Nm

EI_{CBMT} vs IOD

- **Non-Diabetic**
 - $y = 2.7x$
 - $R^2 = 0.95$
 - SEE = 11.6 Nm2

- **Diabetic**
 - $y = 2.4x$
 - $R^2 = 0.93$
 - SEE = 12.6 Nm2
RESULTS - INFLUENCE OF IOD

K₀ vs IOD
- Non-Diabetic: $y = 27x + 380$
- Diabetic: $y = 5.5x$
- SEE = 14.39 N/mm

E_I vs IOD
- Non-Diabetic: $y = 13x - 190$
- Diabetic: $y = 2.5x$
- SEE = 8.22 Nm²

B₀ vs IOD
- Non-Diabetic: $y = -10x + 230$
- Diabetic: $y = 1.6x$
- SEE = 11 N/(m/s)
RESULTS - INFLUENCE OF BMI

M\text{peak} vs BMI

- **Non-Diabetic**
 - $y = 2.1x$
 - $R^2 = 0.95$
 - SEE = 15.8 Nm

- **Diabetic**
 - $y = 2.0x$
 - $R^2 = 0.94$
 - SEE = 16.3 Nm

EI\text{CBMT} vs BMI

- **Non-Diabetic**
 - $y = 1.5x$
 - $R^2 = 0.95$
 - SEE = 11.4 Nm²

- **Diabetic**
 - $y = 1.4x$
 - $R^2 = 0.91$
 - SEE = 14.9 Nm²
RESULTS - INFLUENCE OF BMI

ElQMT vs BMI
- **Non-Diabetic**
 - $y = 1.6x$
 - $R^2 = 0.93$
 - SEE $= 14.7 \text{ Nm}^2$
- **Diabetic**
 - $y = -0.2x + 50$
 - $R^2 = 0.01$
 - SEE $= 10.7 \text{ Nm}^2$

K₀ vs BMI
- **Non-Diabetic**
 - $y = 3.5x$
 - $R^2 = 0.91$
 - SEE $= 34.6 \text{ N/mm}$
- **Diabetic**
 - $y = 3.3x$
 - $R^2 = 0.94$
 - SEE $= 27.5 \text{ N/mm}$

B₀ vs BMI
- **Non-Diabetic Comparison**
 - $y = 1.4x$
 - $R^2 = 0.79$
 - SEE $= 23 \text{ N/(m/s)}$
- **Diabetic**
 - $y = 1.0x$
 - $R^2 = 0.85$
 - SEE $= 13 \text{ N/(m/s)}$
RESULTS - INFLUENCE OF AGE

M_{peak} vs Age

- **Non-Diabetic**
 - $y = -0.4x + 90$
 - $R^2 = 0.08$
 - SEE = 20.2 Nm

- **Diabetic**
 - $y = -0.2x + 70$
 - $R^2 = 0.03$
 - SEE = 15.4 Nm

E_{CBMT} vs Age

- **Non-Diabetic**
 - $y = 0.70x$
 - $R^2 = 0.88$
 - SEE = 19.7 Nm2

- **Diabetic**
 - $y = 0.59x$
 - $R^2 = 0.90$
 - SEE = 15.0 Nm2
RESULTS - INFLUENCE OF AGE

- **K_b vs Age**
 - **Diabetic**: $y = 1.4x$, $R^2 = 0.92$, SEE = 47.4 N/mm
 - **Non-Diabetic**: $y = 1.5x$, $R^2 = 0.85$, SEE = 31.9 N/mm

- **E_{GMT} vs Age**
 - **Non-Diabetic**: $y = 0.7x$, $R^2 = 0.86$, SEE = 22.5 Nm²

- **B_o vs Age**
 - **Diabetic**: $y = 0.63x$, $R^2 = 0.93$, SEE = 13.3 Nm²
 - **Non-Diabetic Comparison**: $y = 0.60x$, $R^2 = 0.73$, SEE = 28 N/(m/s)
SIGNIFICANCE

• DIABETES DOES HAVE A REDUCING EFFECT ON THE INFLUENCE OF IOD ON M_{PEAK} OR BONE STRENGTH, $E_{I\text{QMT}}$, K_B AND B_B. IOD IS AN ASPECT OF BONE GEOMETRY UNLIKE BMI OR AGE. THIS MEANS THAT THE ABILITY OF BONE GEOMETRY TO PREDICT M_{PEAK} IS LOST IN DIABETES.

• WITH BMI, NO EFFECT OF DIABETES WAS OBSERVED EXCEPT THAT DIABETES REDUCED THE INFLUENCE OF BMI ON $E_{I\text{QMT}}$ AND B_B.

• AGE WAS A VERY WEAK PREDICTOR OF ULNA STRENGTH, ALONG WITH HIGH SEES, BECAUSE OF THE MANY DIFFERENT SIZES AND BODY TYPES ASSOCIATED WITH EVERY AGE. DIABETES HAD A REDUCING EFFECT ON THE INFLUENCE OF AGE ON B_B.
ACKNOWLEDGEMENTS

Dr. Anne Loucks and Lyn Bowman

Erica Custer

Ohio Space Grant Consortium
REFERENCES

