Polymerized Liquid Metal Network Characterization for Stretchable RF Devices

Christopher Hartnagel
Dr. Alexander Watson
Outline

1. Motivation
2. Context and Objective
3. Background Research
4. Experimental Setup
5. Results
6. Conclusions
Motivation

• Air Force Research Lab developed highly stretchable conductive material.
• Polymerized Liquid Metal Networks\(^1\)
  • Gallium metal alloys liquid at room temp.
• Conductive at extreme strains greater than 500%.
• AC and DC resistance is consistent over this range.

---

Highly stretchable conductors are not well developed or characterized especially in RF electronics.

Radio frequency device design requires very specific geometries and dimensions to achieve impedance matching.

When stretching anything, all dimensions are changing especially for extreme strains.

Need to understand intrinsic properties and precise geometries of the device.
Objective

To investigate the effect of strain on Poly-LMN intrinsic properties as well as precise geometries needed for RF circuits.
Experimental Setup (Impedance under strain)

Measured height of substrate and width of trace

Permittivity of Poly-LMN = 2.68

Strains above 300%

Random Strain Increments

\[ Z_0 = \frac{120\pi}{\sqrt{\varepsilon_{\text{eff}}} \left( \frac{W}{H} + 1.393 + \frac{2}{3} \ln \left( \frac{W}{H} + 1.444 \right) \right)} \]

Where \( \varepsilon_{\text{eff}} \) = dielectric constant; \( W \) = width of the signal line, \( mm \); \( H \) = height of the dielectric, \( mm \).

Experimental Setup (Resistivity)

5 samples of 1 sq. inch Poly-LMN

X activation and X then Y activation

Probe aligned along X then remeasured along Y.

Measurements per sample: 30 for each activation and probe axis.

300 total measurements
Results of Impedance Under Strain

Figure 2: Characteristic impedance of a grounded microstrip line on 3M™ VHB™ Tape as it is strained.

Figure 2: Characteristic impedance of a grounded microstrip line on 3M™ VHB™ Tape as it is strained.
Experimental Setup ( Resistivity)

Figure 3: Resistivity of Poly-LMN dielectric based on activation axis and measurement axis.
Conclusions

Objective
To investigate the effect of strain on Poly-LMN intrinsic properties as well as precise geometries needed for RF circuits.

1. Both width and height decreases of stretchable microstrip traces on 3M VHB Tape under strain are beneficial to maintaining impedance matching.

2. Width and height changes of 3M VHB Tape are nearly proportional to one another producing a nearly consistent device impedance over a large strain range.

3. Poly-LMN RF dielectric properties are isotropic and independent of strain axis.
Acknowledgements

Mentor: Dr. Alexander Watson

Partners: Dr. Michelle Yuen, Dr. Carl Thrasher, Dr. Christopher Tabor

UES Inc.

Air Force Research Lab

Ohio Space Grant Consortium (OSGC)
Thank You